Kinetic Energy Calculations Reference Guide:

• The energy an object has due to its motion is called
• is a measure of the amount of matter in an object. In Science, it is typically measured in (kg).
 The of an object is the distance the object travels in a unit of time. In Science, it is typically measured in per (m/s). Kinetic energy is measured in (J). Kinetic Energy = ½ x x 2 = J
Example 1:
A boy is pulling a 10-kg wagon at the speed of 1 m/s.
Kinetic Energy = $\frac{1}{2}$ x Mass x Speed ² = J
KE of wagon $=$ x () ² $=$ J. Example 2:
A girl, who weighs 40kg, was running at 3 m/s.
Kinetic Energy = $\frac{1}{2}$ x Mass x Speed ² = J
KE of girl= $ x $
Example 3:
A girl and her dog are running. The dog has a mass of 20 kg. The girl has a mass of 60 kg. They are running at 2 m/s. Calculate both of their kinetic energies.
Kinetic Energy = $\frac{1}{2}$ x Mass x Speed ² = J
KE of girl = $ _{ } $
KE of dog = x x J.
Who has the highest kinetic energy? Why?

Group Names:	
	Kinetic Energy Formula
KE =	x x () ²
Racer #1:	
Racer #1 Mass: Kg (most	convert pounds to Kilograms)
Racer #1 Speed:	
Trial 1:	Trial 2:
Racer 1 Kinetic Energy Computation: Choos	se the greatest speed of the two trials. Show your work below.
Racer 1's Kinetic Energy is:	J.
Racer #2:	
Racer #2 Mass: Kg (mos	t convert pounds to Kilograms)
Racer #2 Speed:	
Trial 1:	Trial 2:
Racer 2 Kinetic Energy Computation: Choose	se the greatest speed of the two trials. Show your work below.
Racer 2's Kinetic Energy is:	J.

Graph	the results of your kinetic	c energy computations. Round to your nearest ones place.	
100 —			
q0 <u> </u>			
80 —			
70 —			
60 —			
50 —			
40 —			
30 —			
20 —			
10 —			
0 —	KE of Racer 1	KE of Racer 2	
		energy?st kinetic energy?	
What is	s the relationship between	kinetic energy and the mass of an object and its speed?	
object/		an object/organism has and theore	